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Models of diffraction from layered ultrathin coherent structures
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- We show how relatively simple diffraction theory can be applied to layered ultrathin coherent
structures to yield diffraction patterns with main peaks and satellites. We also discuss how the
introduction of lattice strain into the model affects the results, and how this modified model might

be applied to a real system.

PACS numbers: 61.10.Dp;68.55. + b;68.60. + q;

I. INTRODUCTION

Layered ultrathin coherent structures (LUCS) are a
new type of material which consists of ultrathin layers of
metals prepared by sequential vapor deposition of two dis-
similar materials. A simple model based on the structure of
the constituent materials has the same qualitative features as
the real material. We further propose a model in which the
strain between two adjacent dissimilar atomic planes can be
varied, and we examine the results of changing this strain
parameter linearly.

The problem of modeling a periodic composition mod-
ulation was first approached by Daniel and Lipson.! For an
early history of the problem the reader is referred to De Fon-
taine.” More recently, a great deal of interest has been shown
in artificially produced materials, and specifically in artifi-
cially layered materials.>** In particular, layered materials
show promise of having applications as monochromators of
polarized neutrons® and x rays. Elongated and aligned parti-
cles are of considerable importance in permanent magnet
applications.’” This is due to the fact that the remanent mag-
netization, magnetic anisotropy, as well as the coercivity can
be considerably larger in such materials. Large coercivities
have already been found in the layered Cu/Ni system.®

In Sec. II we present the basic diffraction theory and the
solution in some simple limiting cases, and in Sec. III we
present computer calculation results for a specific case for
which experiments have been performed.

Il. DIFFRACTION THEORY

Ideally a LUCS consists of a large number N of layers
stacked to form a macroscopic crystal. Each layer is made of
M atomic planes, whose chemical and structural composi-
tion is modulated in the preparation process. If g is the aver-
age separation of the atomic planes, the periodicity of the
LUCSis A = Ma.

For diffraction experiments, where the scattering vec-
tor is normal to the planes, the ideal sample behaves as a one-
dimensional grating giving rise to diffraction peaks obtained
in terms of the scattering function:

Flg= S 4lg) explign(Ma)]. 1)

n=0
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F (g) is the scattered amplitude, whose square is proportional
to the diffracted intensity. The summation contained in Eq.
{1) ensures that the intensity peaks for the values of the scat-
tering vector ¢ = 27 p/Ma, where p is an integer. For a well-
constructed sample composed of an adequate number of lay-
ers (N~ 10%) the width of the peaks is quite negligible com-
pared to the instrumental resolution of a conventional x-ray
apparatus.

The square of the scattering amplitude |4 (g)|is directly
related to the experimentally measured intensities of the dif-
fraction peaks. By performing a model calculation, |4 (¢)|?
can be calculated, then compared to the experimental inten-
sities, and in this fashion the microscopic structure of the
material is determined. The amplitude is given by the
expression: ‘
A(q)=A Q27w p/Ma)=A,

M
= Y f.exp(2mipm/M)exp 2midg,, p/M),  (2)
m=1

where £, is the scattering amplitude of the mth layer, and
addg,, is the displacement of the mth layer from its average
position ma. The master formula, Eq. (2), shows that 2M
quantities have to be determined by the experimental mea-
surements, namely the f,, and 44,,, and thus at least 2M
different diffraction peaks have to be measured in order to
obtain those physical quantities. Before doing that, however,
it is worthwhile to see whether physical insight can provide a
reduction of the general expression. This can be reduced to
simpler analytical form in some simple but relevant cases,
and it can provide a way to fit the experimental data to a less
formidable number of parameters.

Some of the diffraction peaks given by Eq. (2) assume
particular significance, for their intensity is nonzero even if
the material contained in the basic period is homogeneous,
i.e., f,, = f, and 4¢,, = O for all values of m. These peaks,
due to the average lattice, occur for p = rM, where 7 is an
integer. The other reflections could be reindexed as
p =rM + s, where s is also an integer, to be called “satel-
lites” of the sth order of the average lattice line ». It is impor-
tant to note that the intensity of the satellites is weak com-
pared to that of the average lattice line only in the limit of a
weak perturbation. This means that for large modulation all
peaks should be treated on the same footing. Let us consider
a particular case, namely that the LUCS is made of two ele-
ments in equal portions, so that the basic period is composed
of M, = M /2 layers enriched in one of the constituents, fol-
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lowed by M /2 layers enriched in the second constituent. Let
us further assume that the fluctuations in composition and
strain are identical and symmetric for the two half-periods,

namely:
Afm = _AfM,+m’ A¢m = ——A¢M,+rn’

where 4 f,, = f,, — f. With this constraint, only modula-
tions symmetric to the quarter-period (such as those of sinu-
soidal or square-wave form) are accepted, while others (such
as a sawtooth modulation} are excluded. The scattering am-
plitude takes now the rather simple form:

Afn=8fu _ms1r A= —A8bp _ i)y (3)
—J
—_M/4
p=rM (average lattice line) |4,|=4f > cos[27rds, ], (4a)
m=1
' - M/4 —
p=rM+(25+1) (odd satellites) |4,| =47 3 cos [271"-1‘—{-1—/—242” 1)] sin [Zﬂ(r;t 2“;1 A¢m]
m=1
M4 . — 172 25+ 1
i4m§1 Af,, sin [21rmT(2s + 1)] cos [2w(rj: 7 )A¢,,,J ,
(4b)
-M/4 _—
p=rM 1 2s (even satellites) [4,|=4f 3 cos [27m—Ml£2s] cos [217'(7‘:}: %)A(ﬁm]
m=1
—, M . m—1/2 ] [ ( Zs) ]
4% 4 ar B2 g 2 = \ag,.|. 4c
F m§=:l fmsm[ﬁ " sin ﬂrj:M ¢ (4c)

From Eqs. (4) several important consequences can be
drawn. Let us first examine the evolution of the average lat-
tice line (*‘central peak”) as a function of the length of the
period M. Its scattering amplitude depends only on the
strain, which gives rise to a displacement that can be expand-
ed in the Fourier series:

M m M m
44, =4, — 2#—) 4, — os(6 —)
¢ '27rc°S( m) T )t
(5)

Retaining only the leading first term of the expansion (which
corresponds to a sinusoidal strain) the amplitude of the aver-
age lattice line takes the simple form:

A, = f'MJo(zmA, —”1) (6)
27

where J,, is the zeroeth-order Bessel function. This equation
is only valid in the large M limit, where terms involving
higher-order Bessel functions in the expansion of Eq. (4a)
can be neglected. Comparing the expression Eq. (6) with real
cases, we find that semiconductor superlattices show small
changes of the amplitude of the central peak as a function of
wavelength. This is precisely because the strain in these ma-
terials is small.’ On the other hand, LUCS formed by dis-
similar metals show large changes in the central peak ampli-
tude in qualitative agreement with Eq. {5).

The behavior of the satellites cannot be described in
such a straightforward way. However, it is still possible to
sort out some of their features. For instance, the interference
between the amplitude and lattice perturbation causes asym-
metries in the amplitudes of the 4 sand — s satellites. If no
strains are present (44,, = 0), the even-order satellites iden-
tically vanish. If the scattering amplitudes are the same for
all atoms (4 f,, = 0) the satellites of order s amplitudes es-
sentially proportional to the Bessel functions sth order. In-
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{
spection of Egs. (4b) and (4¢) indicates also that in this case

symmetrical satellites have equal intensity, because the sec-
ond term in each equation is identically zero.

IIl. COMPUTER CALCULATION FOR LAYERED
ULTRATHIN COHERENT STRUCTURE

The qualitative features revealed by the analytical ex-
pansion of the scattering amplitudes are confirmed by nu-
merical calculations, when the diffracted intensities of a (pe-
riodically repeated) set of planes are calculated. For our
purposes we have chosen a simple model] for the LUCS
where the atomic planes of each material have their own
spacing (d, and d,), and the separation between the atomic
planes of dissimilar metals is given by §. We assume m layers
of material 1, followed by 7 layers of material 2, and thus the
modulation wavelength given by

A=(m—1)d, +(n— 1)d, + 26. (7)

Equation (2)for 4 (g) has been evaluated numerically for such
amodel assuming d, = 2.335 A and d, = 2.087 A as appro-
priate for the (110) planes of Nb and the (111) planes of Cu,
respectively. The f,, are the form factors of the two atoms,’
and we have neglected slowly varying functions of 8 such as
Debye-Waller factors, Lorentz polarization for x rays,'° etc.
Figure 1 illustrates a sequence of computed diffraction
patterns, obtained for increasing values of m,n {but keeping
m = n). For this calculation we chose A = md| + nd, as if
the different nature of the two metals separated by the -
spacing would not cause a strain. From the patterns it can be
noticed that in the low-4 limit a single large peak is present
with evenly spaced satellites. This central peak occurs at a
position which is halfway between the Bragg peaks corre-
sponding to the pure niobium and pure copper planes. The
two satellites are asymmetric in height due to the fact that
both an amplitude and a phase modulation is present (in a
calculation in which only a phase or amplitude modulation
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INTENSITY CALCULATION

INTENSITY (ARBITRARY UNITS) (X 109)
D
]

FIG. 1. X-ray vs intensity for various layer thicknesses. The Cu-Nb inter-
face distance is taken to be the Cu (111) plane distance and the Nb-Cu
interface distance is taken to be the Nb (110) plane distance.

is present the peaks are symmetric).
The position of two consecutive peaks / and i + 1 are
related to the modulation wavelength through the equation

A, 1

A= . X »
2 sing;, —sin6,

(8)

where 4, is the wavelength of the x rays. Figure 2 shows a set
of intensities calculated for a strained lattice (§ = 2.21 A).
The effect of strain is to change the relative intensities, but no
major qualitative changes occur. In a detailed comparison
between experiment and theory the relative peak intensities
can be fitted to obtain the values of the strain parameter.

From the figures show an unusual evolution of the x-ray
patterns as a function of layer thickness. This model behav-
ior does not resemble that observed in semiconductor super-
lattices (where the modulation is mainly in the scattering
amplitude fand not in the spacing), but is in good agreement
with that found in Nb/Cu LUCS."! In that experimental
case, as in this model, the x-ray pattern evolves from central
peak with satellites to two distinct peaks with their own sat-
ellites. The main conclusions of the calculation can be sum-
marized as follows: (1) The qualitative evolution of the x rays
versus layer thickness, observed experimentaily, can be ob-
tained from a simple model calculation. In this model, all
peaks (central peak and satellites) arise in a natural way,
from the new superlattice periodicity; (2) the “central peak”
amplitude is only dependent on the strain modulation [see
Eq. (4a)]. For a large number of atomic planes the amplitude
of the central peak is given by the simple Eq. (6).
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INTENSITY CALCULATION
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FIG. 2. X-ray diffraction for various layer thicknesses with the Nb-Cu and
Cu-Nb distance § = 2.21.
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